
[PDF]
Head First Object-Oriented Analysis

And Design

http://overanswer.com/en-us/read-book/5VX91/head-first-object-oriented-analysis-and-design.pdf?r=3ROAPvivDqD7U3QbAVgNquuSJzAfAbhb4Ssn7AlU4QxFKXxVOXa2TgRJnPgdcLj4
http://overanswer.com/en-us/read-book/5VX91/head-first-object-oriented-analysis-and-design.pdf?r=LAU%2BgaGXwiPDNKQ%2BEGX%2BvlJJD379mlTiyk1v4B8WlT4KcoN%2FL08zVg9e4GrMKXrz

"Head First Object Oriented Analysis and Design is a refreshing look at subject of OOAD. What sets

this book apart is its focus on learning. The authors have made the content of OOAD accessible

and usable for the practitioner." --Ivar Jacobson, Ivar Jacobson Consulting "I just finished reading

HF OOA&D and I loved it! The thing I liked most about this book was its focus on why we do

OOA&D-to write great software!" --Kyle Brown, Distinguished Engineer, IBM "Hidden behind the

funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted presentation of OO

Analysis and Design. As I read the book, I felt like I was looking over the shoulder of an expert

designer who was explaining to me what issues were important at each step, and why." --Edward

Sciore, Associate Professor, Computer Science Department, Boston College Tired of reading

Object Oriented Analysis and Design books that only makes sense after you're an expert? You've

heard OOA&D can help you write great software every time-software that makes your boss happy,

your customers satisfied and gives you more time to do what makes you happy. But how? Head

First Object-Oriented Analysis & Design shows you how to analyze, design, and write serious

object-oriented software: software that's easy to reuse, maintain, and extend; software that doesn't

hurt your head; software that lets you add new features without breaking the old ones. Inside you

will learn how to: Use OO principles like encapsulation and delegation to build applications that are

flexible Apply the Open-Closed Principle (OCP) and the Single Responsibility Principle (SRP) to

promote reuse of your code Leverage the power of design patterns to solve your problems more

efficiently Use UML, use cases, and diagrams to ensure that all stakeholders are communicating

clearly to help you deliver the right software that meets everyone's needs. By exploiting how your

brain works, Head First Object-Oriented Analysis & Design compresses the time it takes to learn

and retain complex information. Expect to have fun, expect to learn, expect to be writing great

software consistently by the time you're finished reading this!

Series: Head First

Paperback: 636 pages

Publisher: O'Reilly Media; 1 edition (December 7, 2006)

Language: English

ISBN-10: 0596008678

ISBN-13: 978-0596008673

Product Dimensions: 8 x 1.4 x 9.2 inches

Shipping Weight: 2.6 pounds (View shipping rates and policies)

Average Customer Review: 3.7 out of 5 starsÂ Â See all reviewsÂ (71 customer reviews)

Best Sellers Rank: #53,555 in Books (See Top 100 in Books) #4 inÂ Books > Computers &

Technology > Programming > Software Design, Testing & Engineering > UML #22 inÂ Books >

Textbooks > Computer Science > Object-Oriented Software Design #31 inÂ Books > Computers &

Technology > Computer Science > Systems Analysis & Design

I like the Head First series, and even Head Rush, for its innovative and fun approach for introductory

software topics. I've had small concerns on all of them but I have never been as ambivalent as I

have for this book. I know a big part of this problem was that it was rewritten expeditious (I am still

not sure of the reason why) and it shows throughout the book with spelling, logic and code

errors.You can tell that the first chapter was rushed. There are several spelling and programming

mistakes. The most egregious is where they ask you to look through some code to find what

"FIRST" you change and then they answer that question with a much smaller problem (the main

problem was they forgot to add a return statement (pg.5) and they write about the inconsistency of

using String based searching). It has also been mentioned by several reviewers of the use of the

method name "matches" which only makes sense for regex not for an equals operation. I also did

not like the search example (how can you not think of price in a search?). The best part of this

chapter is the mantra that should be practiced by many engineers: "Make sure your software does

what the customer wants it to do."The next few chapters are definitely better (though still some

spelling mistakes). They are a good read for beginners and intermediate programmers on gathering

requirements, change of these requirements and analysis. The ideas are a bit simplistic though it is

good to get many programmers used to the idea of UML and use cases and using them to drive

requirement gathering and textual analysis. Intermediate and advanced readers familiar with use

cases will gain more from reading Alistair Cockburn's "Writing Effective Use Cases" (or will already

have read it) and for further UML reading should go with "UML Distilled" by Martin Fowler.When the

book gets back to design I see some problems with the coding. The designer has this bizarre idea

of abstracting all properties (under the guise of "encapsulate what varies") into a Map attribute to

lessen the amount of subclasses for instruments. While initially this may seem a good idea it gets rid

of all type-safe coding (you can now safely assign an instrument type to a backwood for the

instrument), you cannot have behavior from the instruments (this is mentioned in the book) and if

you put a property with one letter misspelled or capitalized out-of-place you now have a bug, one

that you might have trouble finding thereby increasing maintenance costs. Too much flexibility

makes the code ambiguous.After design, the studies get to solving really big problems, architecture,

design principles, and iterating and testing. These chapters I enjoyed much more especially the

chapter on design principles with the beginning mantra that "Originality is Overrated." This chapter

goes over basic principles such as OCP (open-closed principle), DRY (don't repeat yourself), SRP

(single responsibility principle) and LSP (Liskov Substitution Principle).Then the book last chapter

(the ooa&d lifecycle) sums the lessons in the book in one large (somewhat contrived but these type

of examples always are) program for the Objectville Subway. Then two terse appendixes dealing

with ten additional OOA&D topics and OO concepts should make the reader realize that this book is

just an introductory sliver of what needs to be learned for a sagacious software acumen.This book is

useful for programmers with a bit of Java (or C#) knowledge who want to get a good overview of

OOA&D. This book is useful because it teaches important OO vernacular and a simple holistic

approach to iterative development. If the book did not have a "quickly done" feeling, better design

and fewer mistakes I would have liked this book more. This book is a good candidate for a second

edition. If you want a more thorough explanation of these topics I recommend "The Object Primer"

by Scott Ambler as one of my favorite books for a good introduction to OOA&D.

Am I really the first to write a review on this new installment? Well, let me start with a huge five stars

for this new addition to the Head First series!I had been waiting for this book to hit the shelves a

while, since I absolutely loved the innovative approach of the Head First Design patterns book. This

one was no different in the way it clearly and creatively presented key principles to good

object-oriented design and educated the reader on how to approach designing software for the real

world from requirements gathering all the way to anticipating and designing for change.A few things

about this book - in my opinion, there is probably no better way to present the world of software

design to a beginner. Instead of talking about abstract concepts, the writers present the material

using concrete scenarios, and through-out the book, the reader is encouraged heavily to think

through the pitfalls and problems and come up with solutions - there is no better way to learn. There

are lots of exercises and even specific places to write ones ideas down.Some topics covered are of

course good object oriented principles like encapsulation and delegation, requirements gathering,

use cases, anticipating changes, class diagrams, UML and more. The book only briefly touches (but

does not go into too much detail) on state diagrams, sequence diagrams, unit testing and other

concepts which are a huge part of software design, in the last chapter. While it does not go into

these subjects deeply, it does not leave the reader completely without any knowledge on these

topics either.It does cover more than enough to enable a reader to become very well versed in

architectural principles. Best of all, the information is presented in a way where it will stick forever.

The whole point is not to cover everything there is to know, but for you to really GET IT, on what is

truly crucial to know.This book is not for seasoned architects or for those who do not appreciate

comical diagrams and pictures on every page (Even though, anyone with a sense of humor would

appreciate the fun way the information was presented). If however, someone is confused about

object oriented design and has only heard the buzz worlds but doesn't know how it all comes

together - this book will ensure that they are never confused again. Not only that, but after reading

this book, they will be armed with tried and tested principles of experience of what kind of design

works for long term solutions vs what is a nightmare.Another thing to mention is that all the code

examples in this book are in Java (as all Head First books are). This is certainly not a problem, even

if you do not code in Java, because the principles are the same no matter the language, and C#

.NET users in particular will not have any problems following the code examples.The book does

assume prior programming knowledge of an object oriented language in order to follow the code.

This is not a book to learn how to write code in a programming language. It teaches how to design

and architect your project, with the whole software life-cycle in mind.There are a few useful

appendixes in the back to quickly define and explain the basics of software design elements used in

the book (like UML for instance).Overall, it is a great book for anyone interested in software design

principles! Best of all, you will get through this book QUICKLY, because with the creative and fun

way that you will be learning, it will be hard to put down.

First off, I'm already a fan of the Head First series - especially the Head First Design Patterns book.

This book follows the same entertaining style and keeps your attention page after page. To me,

there are two kinds of Head First books, ones relating to technologies like Java, Servlets & JSPs,

EJB, etc and ones that cover a more traditionally academic topics like Design Patterns and this

book, OO Analysis and Design. Personally, I like the Head First treatment on the academic topics

better than the others. So, if you weren't a fan of Head First Java (for example) you might want to

give this book (or the Design Patterns one) a try.Specifically for this book - I really liked the chapter

layout and the progression as each chapter builds upon the next. The chapters explain the basics of

OO principles, ease you into Use Cases and how to write good ones, and continues building upon

OO Design principles. When the Head First Design Patterns book came out, we purchased a bunch

for the office and held a few "lunch and learn" classes on design patterns for the team at work. I can

easily see doing the same thing with this book, as the Head First books make it easy to use as

instructional manuals as well.If you have found other books (lectures, articles, etc) on OO Analysis

and Design a bit intimidating or conceptually difficult to grasp, this is the book for you.

Object Success : A Manager's Guide to Object-Oriented Technology And Its Impact On the

Corporation (Object-Oriented Series) Head First Object-Oriented Analysis and Design Reusable

Software : The Base Object-Oriented Component Libraries (Prentice Hall Object-Oriented Series)

Visual Object-Oriented Programming Using Delphi With CD-ROM (SIGS: Advances in Object

Technology) Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design

and Iterative Development (3rd Edition) Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Process (2nd Edition) Object-Oriented

Analysis and Design for Information Systems: Modeling with UML, OCL, and IFML UML and the

Unified Process: practical object-oriented analysis and design Systems Analysis and Design: An

Object-Oriented Approach with UML Systems Analysis and Design with UML Version 2.0: An

Object-Oriented Approach Object-Oriented Analysis and Design with the Unified Process (Available

Titles CengageNOW) An Object-Oriented Approach to Programming Logic and Design Tools For

Structured and Object-Oriented Design (7th Edition) Object-Oriented Modeling and Design with

UML (2nd Edition) Practical Object-Oriented Design in Ruby: An Agile Primer (Addison-Wesley

Professional Ruby) Design Patterns CD: Elements of Reusable Object-Oriented Software

(Professional Computing) Object Oriented Design with Ada: Maximizing Reusability for Real-Time

Systems Fundamentals of Object-Oriented Design in UML Design Patterns: Elements of Reusable

Object-Oriented Software Design Patterns: Elements of Reusable Object-Oriented Software (Adobe

Reader)

http://overanswer.com/en-us/read-book/5VX91/head-first-object-oriented-analysis-and-design.pdf?r=U6yBk85tE5BzY4LSZy5dS93iYbDTh%2Bmrki25L0I7rE5zUZaGtimUKRnqAPTGjzy%2F
http://overanswer.com/en-us/dmca

